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Abstract

In this paper, we present a flexible ap-
proach to the efficient and exhaustive man-
ual annotation of text documents. For this
purpose, we extend WebAnno (Yimam et
al., 2013) an open-source web-based an-
notation tool.1 While it was previously
limited to specific annotation layers, our
extension allows adding and configuring
an arbitrary number of layers through a
web-based UI. These layers can be an-
notated separately or simultaneously, and
support most types of linguistic annota-
tions such as spans, semantic classes, de-
pendency relations, lexical chains, and
morphology. Further, we tightly inte-
grate a generic machine learning compo-
nent for automatic annotation suggestions
of span annotations. In two case studies,
we show that automatic annotation sug-
gestions, combined with our split-pane UI
concept, significantly reduces annotation
time.

1 Introduction

The annotation of full text documents is a costly
and time-consuming task. Thus, it is important to
design annotation tools in such a way that the an-
notation process can happen as swiftly as possible.
To this end, we extend WebAnno with the capabil-
ity of suggesting annotations to the annotator.

A general-purpose web-based annotation tool
can greatly lower the entrance barrier for linguistic
annotation projects, as tool development costs and
preparatory work are greatly reduced. WebAnno
1.0 only partially fulfilled desires regarding gen-
erality: Although it covered already more kinds

1WebAnno is open-source software under the terms of the
Apache Software License 2.0. This paper describes v1.2:
http://webanno.googlecode.com

of annotations than most other tools, it supported
only a fixed set of customizable annotation lay-
ers (named entities, part-of-speech, lemmata, co-
reference, dependencies). Thus, we also remove a
limitation of the tool, which was previously bound
to specific, hardcoded annotation layers.

We have generalized the architecture to support
three configurable generic structures: spans, rela-
tions, and chains. These support all of the original
layers and allow the user to define arbitrary custom
annotation layers based on either of these struc-
tures. Additionally, our approach allows maintain-
ing multiple properties on annotations, e.g. to sup-
port morphological annotations, while previously
only one property per annotation was supported.

Automatic suggestion of annotations is based
on machine learning, which is common practice
in annotation tools. However, most of existing
web-based annotation tools, such as GATE (Cun-
ningham et al., 2011) or brat (Stenetorp et al.,
2012), depend on external preprocessing and post-
processing plugins or on web services. These tools
have limitations regarding adaptability (difficulty
to adapt to other annotation tasks), reconfigurabil-
ity (generating a classifier when new features and
training documents are available is complicated),
and reusability (requires manual intervention to
add newly annotated documents into the iteration).

For our approach, we assume that an annota-
tor actually does manually verify all annotations
to produce a completely labeled dataset. This task
can be sped up by automatically suggesting anno-
tations that the annotator may then either accept
or correct. Note that this setup and its goal differs
from an active learning scenario, where a system
actively determines the most informative yet unan-
notated example to be labeled, in order to quickly
arrive at a high-quality classifier that is then to be
applied to large amounts of unseen data.

Our contribution is the integration of machine
learning into the tool to support exhaustive an-
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notation of documents providing a shorter loop
than comparable tools (Cunningham et al., 2011;
Stenetorp et al., 2012), because new documents
are added to the training set as soon as they are
completed by the annotators. The machine learn-
ing support currently applies to sequence classifi-
cation tasks only. It is complemented by our ex-
tension allowing to define custom annotation lay-
ers, making it applicable to a wide range of anno-
tation tasks with only little configuration effort.

Section 2 reviews related work about the uti-
lization of automatic supports and customiza-
tion of annotation schemes in existing annotation
tools. The integration of automatic suggestions
into WebAnno, the design principles followed, and
two case studies are explained in Section 3. Sec-
tion 4 presents the implementation of customiz-
able annotation layers into the tool. Finally, Sec-
tion 5 summarizes the main contributions and fu-
ture directions of our work.

2 Related Work

Automatic annotation support The impact of
using lexical and statistical resources to produce
pre-annotation automatically to increase the anno-
tation speed has been studied widely for various
annotation tasks. For the task of medical named
entity labeling, Lingren et al. (2013) investigate
the impact of automatic suggestions on annotation
speed and potential biases using dictionary-based
annotations. This technique results in 13.83% to
21.5% time saving and in an inter-annotator agree-
ment (IAA) increase by several percentage points.

WordFreak (Morton and LaCivita, 2003) in-
cludes an automation component, where instances
with a low machine learning confidence are pre-
sented for annotation in an active learning setup.
Beck et al. (2013) demonstrate that the use of ac-
tive learning for machine translation reduces the
annotation effort and show a reduced annotation
load on three out of four datasets.

The GoldenGATE editor (Sautter et al., 2007)
integrates NLP tools and assistance features for
manual XML editing. The tool is used in correct-
ing/editing an automatically annotated document
with an editor where both text and XML markups
are modified. GoldenGATE is merely used to fa-
cilitate the correction of an annotation while pre-
annotation is conducted outside of the tool.

Automatic annotation support in brat (Stenetorp
et al., 2012) was carried out for a semantic class

disambiguation task to investigate how such au-
tomation facilitates the annotators’ progress. They
report a 15.4% reduction in total annotation time.
However, the automation process in brat 1) de-
pends on bulk annotation imports and web service
configurations, which is labor intensive, 2) is task
specific so that it requires a lot of effort to adapt it
to different annotation tasks, 3) there is no way of
using the corrected result for the next iteration of
training the automatic tool.

The GATE Teamware (Bontcheva et al., 2013)
automation component is most similar to our
work. It is based either on plugins and externally
trained classification models, or uses web services.
Thus, it is highly task specific and requires exten-
sive configuration. The automatic annotation sug-
gestion component in our tool, in contrast, is easily
configurable and adaptable to different annotation
tasks and allows the use of annotations from the
current annotation project.

Custom annotation layers Generic annotation
data models are typically directed graph models
(e.g. GATE, UIMA CAS (Götz and Suhre, 2004),
GrAF (Ide and Suderman, 2007)). In addition, an
annotation schema defines possible kinds of anno-
tations, their properties and relations. While these
models offer great expressiveness and flexibility, it
is difficult to adequately transfer their power into
a convenient annotation editor. For example, one
schema may prescribe that the part-of-speech tag
is a property on a Token annotation, another one
may prescribe that the tag is a separate annotation,
which is linked to the token. An annotator should
not be exposed to these details in the UI and should
be able to just edit a part-of-speech tag, ignorant of
the internal representation.

This problem is typically addressed in two
ways. Either, the full complexity of the annota-
tion model is exposed to the annotator, or the an-
notation editor uses a simplified model. The first
approach can easily lead to an unintuitive UI and
make the annotation an inconvenient task. The
second approach (e.g. as advocated by brat) re-
quires the implementation of specific import and
export filters to transform between the editor data
model and the generic annotation data models.

We propose a third approach integrating a con-
figurable mapping between a generic annotation
model (UIMA CAS) and a simplified editing
model (brat) directly into the annotation tool.
Thus, we avoid exposing the full complexity of
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the generic model to the user and also avoid the
necessity for implementing import/export filters.
Similar approaches have already been used to map
annotation models to visualization modules (cf.
(Zeldes et al., 2009)), but have, to our knowledge,
not been used in an annotation editor. Our ap-
proach is different from schema-based annotation
editors (e.g. GATE), which employ a schema as
a template of properties and controlled vocabular-
ies that can be used to annotate documents, but
which do not allow to map structures inherent in
annotations, like relations or chains, to respective
concepts in the UI.

3 Automatic Annotation Suggestions

It is the purpose of the automatic annotation sug-
gestion component to increase the annotation ef-
ficiency, while maintaining the quality of annota-
tions. The key design principle of our approach is
a split-pane (Figure 1) that displays automatic an-
notation suggestions in the suggestion pane (lower
part) and only verified or manual ones in the anno-
tation pane (upper part). In this way, we force the
annotators to review each automatic suggestion as
to avoid overlooking wrong suggestions.

Figure 1: Split-pane UI. Upper: the annotation
pane, which should be completed by the annotator.
Lower: the suggestion pane, displaying predic-
tions or automatic suggestions, and coding their
status in color. This examples shows automatic
suggestions for parts-of-speech. Unattended anno-
tations are rendered in blue, accepted annotations
in grey and rejected annotations in red. Here, the
last five POS annotations have been attended, four
have been accepted by clicking on the suggestion,
and one was rejected by annotating it in the anno-
tation pane.

3.1 Suggestion modes

We distinguish three modes of automatic annota-
tion suggestion:

Correction mode In this mode, we import doc-
uments annotated by arbitrary external tools and
present them to the user in the suggestion pane
of the annotation page. This mode is specifi-
cally appropriate for annotation tasks where a pre-
annotated document contains several possibilities
for annotations in parallel, and the user’s task is
to select the correct annotation. This allows to
leverage specialized external automatic annotation
components, thus the tool is not limited to the in-
tegrated automation mechanism.

Repetition mode In this mode, further occur-
rences of a word annotated by the user are high-
lighted in the suggestion pane. To accept sugges-
tions, the user can simply click on them in the sug-
gestion pane. This basic – yet effective – sugges-
tion is realized using simple string matching.

Learning mode For this mode, we have inte-
grated MIRA (Crammer and Singer, 2003), an ex-
tension of the perceptron algorithm for online ma-
chine learning which allows for the automatic sug-
gestions of span annotations. MIRA was selected
because of its relatively lenient licensing, its good
performance even on small amounts of data, and
its capability of allowing incremental classifier up-
dates. Results of automatic tagging are displayed
in the suggestion pane. Our architecture is flexible
to integrate further machine learning tools.

3.2 Suggestion Process

The workflow to set up an automatically supported
annotation project consists of the following steps.

Importing annotation documents We can im-
port documents with existing annotations (manual
or automatic). The annotation pane of the automa-
tion page allows users to annotate documents and
the suggestion pane is used for the automatic sug-
gestion as shown in Figure 1. The suggestion pane
facilitates accepting correct pre-annotations with
minimal effort.

Configuring features For the machine learning
tool, it is required to define classification features
to train a classifier. We have designed a UI where
a range of standard classification features for se-
quence tagging can be configured. The features
include morphological features (prefixes, suffixes,
and capitalization), n-grams, and other layers as a
feature (for example POS annotation as a feature
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Figure 2: Configuring an annotation suggestion: 1) layers for automation, 2) different features, 3) training
documents, 4) start training classifier.

for named entity recognition). While these stan-
dard features do not lead to state-of-the-art per-
formance on arbitrary tasks, we have found them
to perform very well for POS tagging, named en-
tity recognition, and chunking. Figure 2 shows the
feature configuration in the project settings.

Importing training documents We offer two
ways of providing training documents: importing
an annotated document in one of the supported file
formats, such as CoNLL, TCF, or UIMA XMI; or
using existing annotation documents in the same
project that already have been annotated.

Starting the annotation suggestion Once fea-
tures for a training layer are configured and train-
ing documents are available, automatic annotation
is possible. The process can be started manually
by the administrator from the automation settings
page, and it will be automatically re-initiated when
additional documents for training become avail-
able in the project. While the automatic annotation
is running in the background, users still can work
on the annotation front end without being affected.
Training and creating a classifier will be repeated
only when the feature configuration is changed or
when a new training document is available.

Display results on the monitoring page Af-
ter the training and automatic annotation are com-
pleted, detailed information about the training data
such as the number of documents (sentence, to-
kens), features used for each layer, F-score on
held-out data, and classification errors are dis-
played on the monitoring page, allowing an esti-
mation whether the automatic suggestion is use-
ful. The UI also shows the status of the training
process (not started, running, or finished).

3.3 Case Studies

We describe two case studies that demonstrate lan-
guage independence and flexibility with respect to
sequence label types of our automatic annotation
suggestions. In the first case study, we address the
task of POS tagging for Amharic as an example of
an under-resourced language. Second, we explore
German named entity recognition.

3.3.1 Amharic POS tagging
Amharic is an under-resourced language in the
Semitic family, mainly spoken in Ethiopia. POS
tagging research for Amharic is mostly conducted
as an academic exercise. The latest result re-
ported by Gebre (2009) was about 90% accuracy
using the Walta Information Center (WIC) corpus
of about 210,000 tokens (1065 news documents).
We intentionally do not use the corpus as training
data because of the reported inconsistencies in the
tagging process (Gebre, 2009). Instead, we man-
ually annotate Amharic documents for POS tag-
ging both to test the performance of the automa-
tion module and to produce POS-tagged corpora
for Amharic. Based upon the work by Petrov et al.
(2012) and Ethiopian Languages Research Cen-
ter (ELRC) tagset, we have designed 11 POS tags
equivalent to the Universal POS tags. The tag DET
is not included as Amharic denotes definiteness as
noun suffixes.

We collected some Amharic documents from an
online news portal.2 Preprocessing of Amharic
documents includes the normalization of charac-
ters and tokenization (sentence and word bound-

2http://www.ethiopianreporter.com/
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Figure 3: Example Amharic document. The red
tags in the suggestion pane have not been con-
firmed by the annotator.

ary detection). Initially, we manually annotated 21
sentences. Using these, an iterative automatic an-
notation suggestion process was started until 300
sentences were fully annotated. We obtained an
F-score of 0.89 with the final model. Hence the
automatic annotation suggestion helps in decreas-
ing the total annotation time, since the user has
to manually annotate only one out of ten words,
while being able to accept most automatic sugges-
tions. Figure 3 shows such an Amharic document
in WebAnno.

3.3.2 German Named Entity Recognition
A pilot Named Entity Recognition (NER) project
for German was conducted by Benikova et al.
(2014). We have used the dataset – about 31,000
sentences, over 41,000 NE annotations – for train-
ing NER. Using this dataset, an F-score of about
0.8 by means of automatic suggestions was ob-
tained, which leads to an increase in annotation
speed of about 21% with automatic suggestion.

4 Customs Annotation Layers

The tasks in which an annotation editor can be em-
ployed depends on the expressiveness of the un-
derlying annotation model. However, fully expos-
ing the expressive power in the UI can make the
editor inconvenient to use.

We propose an approach that allows the user
to configure a mapping of an annotation model to
concepts well-supported in a web-based UI. In this
way, we can avoid to expose all details of the an-
notation model in the UI, and remove the need to
implement custom import/export filters.

WebAnno 1.0 employs a variant of the annota-
tion UI provided by brat, which offers the concepts
of spans and arcs. Based on these, WebAnno 1.2
implements five annotation layers: named entity,
part-of-speech, lemmata, co-reference, and depen-
dencies. In the new WebAnno version, we gener-
alized the support for these five layers into three

Figure 4: UI for custom annotation layers.

structural categories: span, relation (arc), and
chain. Each of these categories is handled by a
generic adapter which can be configured to sim-
ulate any of the original five layers. Based on
this generalization, the user can now define cus-
tom layers (Figure 4).

Additionally, we introduced a new concept of
constraints. For example, NER spans should not
cross sentence boundaries and attach to whole to-
kens (not substrings of tokens). Such constraints
not only help preventing the user from making in-
valid annotations, but can also offer extra conve-
nience. We currently support four hard-coded con-
straints:

Lock to token offsets Defines if annotation
boundaries must coincide with token boundaries,
e.g. named entities, lemmata, part-of-speech, etc.
For the user’s convenience, the annotation is auto-
matically expanded to include the full token, even
if only a part of a token is selected during annota-
tion (span/chain layers only).

Allow multiple tokens Some kinds of annota-
tions may only cover a single token, e.g. part-of-
speech, while others may cover multiple tokens,
e.g. named entities (span/chain layers only).

Allow stacking Controls if multiple annotations
of the same kind can be at the same location, e.g.
if multiple lemma annotations are allowed per to-
ken. For the user’s convenience, an existing an-
notation is replaced if a new annotation is created
when stacking is not allowed.

Allow crossing sentence boundaries Certain
annotations, e.g. named entities or dependency de-
lations, may not cross sentence boundaries, while
others need to, e.g. coreference chains.

Finally, we added the ability to define multiple
properties for annotations to WebAnno. For exam-
ple, this can be use to define a custom span-based
morphology layer with multiple annotation prop-
erties such as gender, number, case, etc.
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5 Conclusion and Outlook

We discussed two extensions of WebAnno: the
tight and generic integration of automatic annota-
tion suggestions for reducing the annotation time,
and the web-based addition and configuration of
custom annotation layers.

While we also support the common practice
of using of external tools to automatically pre-
annotate documents, we go one step further by
tightly integrating a generic sequence classifier
into the tool that can make use of completed an-
notation documents from the same project. In two
case studies, we have shown quick convergence
for Amharic POS tagging and a substantial reduc-
tion in annotation time for German NER. The key
concept here is the split-pane UI that allows to dis-
play automatic suggestions, while forcing the an-
notator to review all of them.

Allowing the definition of custom annotation
layers in a web-based UI is greatly increasing
the number of annotation projects that potentially
could use our tool. While it is mainly an engineer-
ing challenge to allow this amount of flexibility
and to hide its complexity from the user, it is a ma-
jor contribution in the transition from specialized
tools towards general-purpose tools.

The combination of both – custom layers and
automatic suggestions – gives rise to the rapid
setup of efficient annotation projects. Adding to
existing capabilities in WebAnno, such as cura-
tion, agreement computation, monitoring and fine-
grained annotation project definition, our contri-
butions significantly extend the scope of annota-
tion tasks in which the tool can be employed.

In future work, we plan to support annota-
tion suggestions for non-span structures (arcs and
chains), and to include further machine learning
algorithms.
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